edited by
11,494 views
30 votes
30 votes

What is the boolean expression for the output $f$ of the combinational logic circuit of NOR gates given below?

  1. $\overline{Q+R}$
  2. $\overline{P+Q}$
  3. $\overline{P+R}$
  4. $\overline{P+Q+R}$
edited by

4 Answers

Best answer
33 votes
33 votes
$​\text{ Level 1:}$
$(\overline{P + Q}) (\overline{Q + R}) (\overline{P + R}) (\overline{Q + R})$

$\text{ Level 2:}$
$\overline{(\overline{P + Q})+(\overline{Q + R})} = (P+Q)(Q+R)=PQ+PR+Q+QR$
$\overline{(\overline{P + R}) (\overline{Q + R})} = (P+R)(Q+R)=PQ+R+QR+PR$

$\text{ Level 3:}$
$\\\overline{PR+QR+PQ+Q+R} =\overline{Q+R}\\ \therefore \text{ Answer: Option A} ​$
selected
9 votes
9 votes
$f=(\overline{(\overline{(\overline{P+Q})+(\overline{Q+R})})+(\overline{(\overline{P+R})+(\overline{Q+R})})})$

Using De-Morgan's law: $\overline{\overline{(P+Q)}+\overline{(Q+R)}}=\overline{\overline{(P+Q)}}.\overline{\overline{(Q+R)}}$ and $\overline{\overline{(P+R)}+\overline{(Q+R)}}=\overline{\overline{(P+R)}}.\overline{\overline{(Q+R)}}$

$\rightarrow(\overline{(P+Q).(Q+R)+(P+R).(Q+R)})$
$\rightarrow(\overline{(PQ+PR+Q+QR)+(PQ+PR+R+QR)})$

Q + QR = Q and R + QR = R [absorption law]

$\rightarrow(\overline{(PQ+PR+Q)+(PQ+PR+R)})$

Q + PQ = Q and R + PR = R

$\rightarrow(\overline{PR+R+PQ+Q})$
$\rightarrow(\overline{Q+R})$
edited by
8 votes
8 votes
[((P'Q') + (Q'R'))' + (P'R') + (Q'R'))']'

[(Q'(P' + R'))' + (R'(P' + Q'))']'

[(Q + PR + R + PQ)]'

[Q(1 + P) + R(1 + P)]'

[Q + R]'---------Answer.
Answer:

Related questions

53 votes
53 votes
10 answers
1
go_editor asked Sep 29, 2014
30,449 views
In the sequential circuit shown below, if the initial value of the output $Q_1Q_0$ is $00$. What are the next four values of $Q_1Q_0$? $11$, $10$, $01$, $00$$10$, $11$, $...
24 votes
24 votes
2 answers
2
go_editor asked Sep 29, 2014
8,818 views
The Boolean expression of the output $f$ of the multiplexer shown below is$\overline {P \oplus Q \oplus R}$$P \oplus Q \oplus R$$P+Q+R$$\overline{P+Q+R}$
53 votes
53 votes
3 answers
3
go_editor asked Sep 29, 2014
16,228 views
$P$ is a $16$-bit signed integer. The $2$'s complement representation of $P$ is $(F87B)_{16}$. The $2$'s complement representation of $8\times P$ is$(C3D8)_{16}$$(187B)_{...