Redirected
edited by
512 views
0 votes
0 votes

The value of the integral ${\LARGE \int} _{0}^{\pi}\dfrac{x}{1+sin^2x}dx$ is

  1. $2\sqrt2\pi^2$
  2. $\dfrac{\pi^2}{2\sqrt2}$
  3. $\dfrac{\pi^2}{\sqrt2}$
  4. $\sqrt2\pi^2$
edited by

1 Answer

Best answer
4 votes
4 votes

Assuming , $I = {\LARGE \int} _{0}^{\pi}\dfrac{x}{1+\sin^2x}dx$

$\qquad ={\LARGE \int} _{0}^{\pi}\dfrac{(\pi-x)}{1+\sin^2(\pi-x)}dx$

$\qquad =\pi{\LARGE \int} _{0}^{\pi}\dfrac{dx}{1+\sin^2x}-{\LARGE \int} _{0}^{\pi}\dfrac{dx}{1+\sin^2x}dx$       $\Big[$$\color{blue}{\text{We know that}}$ $\color{red}{\sin(\pi-x)=\sin x}\Big]$

∴ $I =\pi{\LARGE \int} _{0}^{\pi}\dfrac{dx}{1+\sin^2x}-I$

Or, $2I =\pi{\LARGE \int} _{0}^{\pi}\dfrac{dx}{1+\sin^2x}$

$\qquad = 2\pi{\LARGE \int} _{0}^{\dfrac{\pi}{2}}\dfrac{dx}{1+\sin^2x}$ $\qquad\qquad\Bigg[\color{red}{∵ {\LARGE \int} _{0}^{2a}f(x)dx=2{\LARGE \int} _{0}^{a}f(x)dx} \hspace{0.2cm}\color{blue}{\text{when}}\hspace{0.1cm}\color{red}{ f(a-x)dx  = f(x)}\Bigg]$

$\qquad = 2\pi{\LARGE \int} _{0}^{\dfrac{\pi}{2}}\dfrac{dx}{1+\dfrac{1}{\mathrm{cosec}^2x}}= 2\pi{\LARGE \int} _{0}^{\dfrac{\pi}{2}}\dfrac{\mathrm{cosec}^2x}{1+\mathrm{cosec}^2x}dx$

$\qquad=2\pi{\LARGE \int} _{0}^{\dfrac{\pi}{2}}\dfrac{\mathrm{cosec}^2x}{1+1+\cot^2x}dx$  $\qquad\qquad\bigg[\color{red}{∵\mathrm{cosec}^2x-\cot^2x=1}\bigg]$

$\qquad=2\pi{\LARGE \int} _{0}^{\dfrac{\pi}{2}}\dfrac{\mathrm{cosec}^2x}{2+\cot^2x}dx$

$\color{blue}{\text{Now, assuming,}}$ $\color{red}{\cot x=z}$

$\qquad\color{red}{∴\dfrac{d}{dz}(\cot x)= dz}$

$\qquad Or, \color{red}{-\mathrm{cosec}^2x.dx=dz}$

$\color{blue}{\&}$ 

$\color{red}{x}$ $\color{red}{0}$ $\color{red}{\dfrac{\pi}{2}}$
$\color{red}{z}$ $\color{red}{\infty}$ $\color{red}{0}$

$∴2\pi{\LARGE \int} _{0}^{\dfrac{\pi}{2}}\dfrac{\mathrm{cosec}^2x}{2+\cot^2x}dx = -2\pi{\LARGE \int} _{\infty}^{0}\dfrac{dz}{z^2+2} =2\pi{\LARGE \int} _{0}^{\infty}\dfrac{dz}{z^2+2} $ $\qquad\Bigg[\color{red}{∵{\LARGE \int_a^bdx= -\LARGE \int_a^bdx}}\Bigg]$

$= 2\pi{\LARGE \int} _{0}^{\infty}\dfrac{dz}{z^2+(\sqrt{2})^2}$

$∴2I = 2\pi{\LARGE \int} _{0}^{\infty}\dfrac{dz}{z^2+(\sqrt{2})^2}$

$Or,I = \pi{\LARGE \int} _{0}^{\infty}\dfrac{dz}{z^2+(\sqrt{2})^2}$

$\color{blue}{\text{Now, we know}}$ $\color{red}{\Large \int\dfrac{dx}{x^2+a^2}= \dfrac{1}{a}\tan^{-1}\dfrac{x}{a} +c} \hspace{0.2cm} \color{blue}{where,\hspace{0.1cm}c=constant}$

$\color{green}{∴\pi{\LARGE \int} _{0}^{\infty}\dfrac{dz}{z^2+(\sqrt{2})^2}=\pi\bigg[\dfrac{1}{\sqrt2}\tan^{-1}\dfrac{x}{\sqrt2}\bigg]_0^\infty= \pi.\dfrac{1}{\sqrt2}.\dfrac{\pi}{2}=\dfrac{\pi^2}{2\sqrt2}}$

selected by

Related questions

0 votes
0 votes
2 answers
1
jjayantamahata asked Mar 17, 2018
670 views
The value of $\displaystyle{\lim_{x\to 0}}$ $\sin x \sin(\dfrac{1}{x})$$\text{is 0}$$\text{is 1}$$\text{is 2}$$\text{does not exist}$
31 votes
31 votes
4 answers
2
go_editor asked Sep 28, 2014
8,155 views
The value of the integral given below is$$\int \limits_0^{\pi} \: x^2 \: \cos x\:dx$$$-2\pi$$\pi$$-\pi$$2\pi$
31 votes
31 votes
5 answers
3
go_editor asked Sep 28, 2014
10,939 views
If $\int \limits_0^{2 \pi} |x \: \sin x| dx=k\pi$, then the value of $k$ is equal to ______.
0 votes
0 votes
0 answers
4
sumit goyal 1 asked Jan 30, 2018
413 views
$\int_{0}^{2\pi } ( \sqrt{1 - sin 2x }) dx$= $\int_{0}^{2\pi } ( \sqrt{sin^{2}x + cos^{2}x - 2sinxcosx }) dx$=$\int_{0}^{2\pi } | sin x - cos x | dx$after this how to bre...