@ankitgupta.1729
I think it will be like this
$\left ( \sqrt{n} \right )$ ---------------------1st level
$\left ( \sqrt{n}/2 \right ),\left ( \sqrt{n}/2 \right )$--------------------in 2nd level
$\left ( \sqrt{n}/2^{2} \right ),\left ( \sqrt{n}/2^{2} \right ),\left ( \sqrt{n}/2^{2} \right ),\left ( \sqrt{n}/2^{2} \right )$----------in 3rd level
---------------------------------------------
In last level it will be $ \left ( \sqrt{n}/2^{log_{2}\sqrt{n}} \right ) ,\left ( \sqrt{n}/2^{log_{2}\sqrt{n}} \right ),........\left ( \sqrt{n}/2^{log_{2}\sqrt{n}} \right )$
And there are $\left (2^{ {log_{2}\sqrt{n}}} \right )$ level
So, total time $\sqrt{n} .\left ( {2^{log_{2}\sqrt{n}}} \right ) =\Theta \left ( n \right )$
Is anything wrong here?