The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+15 votes
943 views

A partial order ≤ is defined on the set S = {x, a1, a2, ... an, y} as x ≤ ai for all i and ai ≤ y for all i, where n ≥ 1. The number of total orders on the set S which contain the partial order ≤ is

  1. n!
  2. n+2
  3. n
  4. 1

 

asked in Set Theory & Algebra by Veteran (67.5k points) | 943 views

1 Answer

+18 votes
Best answer

To make this partial order a total order, we need the relation to hold for every two element of the partial order. Currently between any ai and aj, there is no relation. So, for every ai, aj, we have to add either (ai, aj) or (aj, ai) in total order. So, this translates to giving an ordering for n elements between x and y, which can be done in n! ways. So, answer is (a).
 

partial order
 

The bottom figure is for a total order. We can permute the ai from i = 1 to n, and each permutation will also be a total order containing the given partial order. 

answered by Veteran (326k points)
selected by
Answer to this is (C) i.e n. An order is set in which every two elements are comparable. So we can not take two or more than two ai in a TOSET as you have shown above. Tosets that are possible will be {x,a1,y},{x,a2,y}........{x,an,y}. So only 'n' tosets are possible.

To back up this argument we can also state a qoute from wikipedia that "maximum number of chains that an order can be divided into is ATMOST k, where k is the width of the lattice which here is n.
The question asks for NUMBER of total orders possible. {x, a1, a2, ... an, y} where there element at position i ≤ element at position i+1, is one such TOSET. Similarly, we can have {x, a2, a1, a3, ... an, y} which is another TOSET with the same relation. Both of these TOSET contains the given POSET in question. In this way we can permute a1..an in any order and each permutation will be a new TOSET and will contain the given POSET.
OK I got it..I was instead dividing the POSET into maximum number of TOSETS that it can be divided into with the same relation.

But question asks for TOSETs that contain the given POSET in it.

Thank You..
Agreed
arjun sir,what is meant by the TOSET will contain the given poset?? how is it retained in the TOSET??Can you explain??
@Arjun. Its not that we have to order it in chain. Its that in how many ways we can have x1, x2......,xn arranged in between 'a' and 'b' so that the given partial order is preserved.
@Arjun Sir, I think the given ans fails for subset operation on Powerset of set A={a,b}.

where <= means subset operation

P(A)=S={phi,{a},{b},{a,b}}

Here x=Phi a1={a} a2={b} y=A

we know {a} is not subset of {b} and vice versa. so both can't present in TOSET.

But u told in ur ans...a1 and a2 both can present simultaneously in n! order..which contradicts with above example.

let A={0,1,2,3,∞}

here x=0, y=∞, a1=1, a2=2, a3=3.

∞                                      ∞

|                                        |

1                and                 3

|                                        |

2                                       1

|                                         |

3                                       2

|                                        |

0                                       0

is a Toset                       is also a Toset 

bcz as mentiond in question , ≤ is applicable only for (x,a1) and (a3,y), however a1, a2, a(1,2,3) can be permutate in any order (3!=6) as long as x has leat value and y has greatest value in the set. same thing applicable for your query, i think. 

In question it is given that

x ≤ ai for all i and ai ≤ y for all i, 

  Rajesh Pradhan in ques they dont mention any relationship between a(i) and a(j) so u can arrange in any order

@Rajesh, Its mentioned in question about the partial order ≤ & analysis has to be done wrt that only. Dont change the Poset. Hope it clears your doubt.

Are we doing n! Permutations because relation between any ai and aj is not specified in question ???

We are doing n!, because in the question it is given that

The number of total orders on the set S which contain the partial order ≤ is

Cond 1: it should be TOSET:-

So, as per the definiition of the toset it should contain all the elements of the set,

 Cond 2: it should satisfy the relation x <= ai <= y.

That's why from cond 1 we have to take all n elements with x and y, and from cond 2 we can arrange in any order i.e. n!.

Hence, it is n! is the answer.



Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

29,017 questions
36,844 answers
91,383 comments
34,721 users