The following LLP
$\text{Maximize } z=100x_1 +2x_2+5x_3$
Subject to
$14x_1+x_2-6x_33+3x_4=7$
$32x_1+x_2-12x_3 \leq 10$
$3x_1-x_2-x_3 \leq 0$
$x_1, x_2, x_3, x_4 \geq 0$ has
- Solution : $x_1=100, \: x_2=0, \: x_3=0$
- Unbounded solution
- No solution
- Solution : $x_1=50, \: x_2=70, \: x_3=60$