1,994 views
2 votes
2 votes
The number of ways to roll 5 six sided dice to get sum of 25 is ________.

_________________________________________________________

if solving with generating function, then why dividing by $\left ( 1-x \right )$ if equation is $\frac{x\left ( 1-x^{6} \right )}{\left ( 1-x \right )}$?

2 Answers

Best answer
4 votes
4 votes

$[x^{25}] (x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)$

 

$[x^{25}] (x^1 + x^2 + x^3 + x^4 + x^5 + x^6)^5$

$[x^{25}] x^5(x^0 + x^1 + x^2 + x^3 + x^4 + x^5)^5$

$[x^{20}] (x^0 + x^1 + x^2 + x^3 + x^4 + x^5)^5$

$[x^{20}] (1 + x^1 + x^2 + x^3 + x^4 + x^5)^5$

$[x^{20}] \large  (\frac{1 - x^6}{1 -x })^5$

 

$[x^{20}] \large (1 - x^6)^5(1 -x )^{-5}$

$\sum_{r=0}^{5}\ ^5C_r(-x^6)^r \times \sum_{r=0}^{\infty }\ ^{4+r}C_r(x^r)$

$\Rightarrow  \Large\binom{5}{0} \binom{-5}{20} + (-1) \binom{5}{1} \binom{-5}{14} + \binom{5}{2}\binom{-5}{8} + (-1) \binom{5}{3}\binom{-5}{2}$

$\Rightarrow \binom{24}{20} - 5\binom{18}{14} + 10\binom{12}{8} - 10 \binom{6}{2}$

$\Rightarrow 10626 - 5(3060) + 4950 -150$

$\Rightarrow \large 126$

 

Note:

$\large (1+x^r)^n= \sum_{k=0}^{n} \binom n k (x)^{rk}$

$\large (1 - x)^{-n} = \sum_{k =0}^{n} \binom{n + k -1}{k} x^k$

edited by
2 votes
2 votes
$[x^{25}] (x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)(x^1 + x^2 + x^3 + x^4 + x^5 + x^6)$

 

$[x^{25}] (x^1 + x^2 + x^3 + x^4 + x^5 + x^6)^5$

$[x^{25}] x^5(x^0 + x^1 + x^2 + x^3 + x^4 + x^5)^5$

$[x^{20}] (x^0 + x^1 + x^2 + x^3 + x^4 + x^5)^5$

$[x^{20}] (1 + x^1 + x^2 + x^3 + x^4 + x^5)^5$

so now the equation is,

$x_1 + x_2 + x_3 + x_4 + x_5 = 20, (\  0  \leq x_1 \leq 5,0 \ \leq x_2 \leq 5,0  \leq x_3 \leq 5,0  \leq x_4 \leq 5, \ 0 \leq x_5 \leq 5  )$

Total possible solutions = $\large \binom{24}{4}$

Total valid solutions = total solutions - invalid solutions

So we'll try to calculate all invalid solutions,

let $x_1 \geq 6$

$x_1 + 6 + x_2 + x_3 + x_4 + x_5 = 20$

$x_1 + x_2 + x_3 + x_4 + x_5 = 20 - 6$

$x_1 + x_2 + x_3 + x_4 + x_5 = 14$

so number of invalid solutions where  $x_1 \geq 6$ = $\large \binom{18}{4}$

so the number of invalid solutions where any one of $x_i \geq 6 =$ $\large 5 \times \binom{18}{4} = $$15300$

Now we'll calculate the number of ways $x_1 \geq 6$ and $x_2 \geq 6$

$x_1 + 6 + x_2  + 6 + x_3 + x_4 + x_5 = 20$

$x_1 + x_2  + x_3 + x_4 + x_5 = 8$

so number of invalid solutions = $\large \binom{12}{4}$

but this was only when we put constrain on $x_1$ and $x_2$ but there can be $\binom{5}{2} = 10$ combinations.

So possible combinations = $10 \times \large \binom{12}{4} = 4950$

Now we'll calculate the number of ways $x_1 \geq 6$, $x_2 \geq 6$ and $x_3 \geq 6$,

$x_1 + 6 + x_2  + 6 + x_3 + 6 + x_4 + x_5 = 20$

$x_1 + x_2  + x_3 + x_4 + x_5 = 2$

similarly there are $\binom{5}{3} = 10$ combinations.

So possible combinations = $10 \times \large \binom{6}{4} = 150$

Now we cannot go further finding invalid solutions because 4 variable at once cannot $\geq 6$ all at once.

So total invalid solutions = $15300 - 4950 + 150 = 10500$

Total valid solutions = $\large \binom{24}{4} - $$13560 = \large \color{blue}{ 126}$
edited by

Related questions

1 votes
1 votes
0 answers
1
Akriti sood asked Nov 24, 2016
399 views
Consider independent trails consisting of rolling a pair of fair dice, over and over. What is the probability that a sum of 5 appears before sum of 7? 1/5 1/6 2/9 Non...
1 votes
1 votes
2 answers
2
shikharV asked Dec 30, 2015
560 views
Given answer: APlease explain
1 votes
1 votes
1 answer
3
soujanyareddy13 asked Mar 25, 2021
673 views
Find the following sum.$$\frac{1}{2^{2}-1}+\frac{1}{4^{2}-1}+\frac{1}{6^{2}-1}+\cdots+\frac{1}{40^{2}-1}$$$\frac{20}{41}$$\frac{10}{41}$$\frac{10}{21}$$\frac{20}{21}$$1$
29 votes
29 votes
7 answers
4