search
Log In
0 votes
67 views

The $a, b, c$ and $d$ satisfy the equations$$\begin{matrix} a & + & 7b & + & 3c & + & 5d & = &16 \\ 8a & + & 4b & + & 6c & + & 2d & = &-16 \\ 2a & + & 6b & + & 4c & + & 8d & = &16 \\  5a & + & 7b & + & 3c & + & 5d & = &-16  \end{matrix}$$Then $(a+d)(b+c)$ equals

  1. $-4$
  2. $0$
  3. $16$
  4. $-16$
in Linear Algebra
recategorized by
67 views

1 Answer

1 vote

Let the given equations be 1,2,3,4 in the order they are given.


Adding equation 2 and 3 - 

10a + 10b + 10c + 10d = 0;    Let this be equation 5

Adding equation 1 and 4 - 

6a + 10b  + 10c + 6d = 0;       Let this be equation 6

 

Equation 5 minus 6 :

we get : 4a + 4d =0 

so (a+d) =0

if (a+d) =0 then (a+d)(b+c)=0

therefore answer is B

 

Related questions

2 votes
1 answer
1
64 views
Let $A=\begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix}$, and $B=A+A^2+A^3+ \dots +A^{50}$. Then $B^2 =1$ $B^2 =0$ $B^2 =A$ $B^2 =B$
asked Sep 13, 2018 in Linear Algebra jothee 64 views
1 vote
0 answers
2
69 views
Let $A$ be a real $2 \times 2$ matrix. If $5+3i$ is an eigenvalue of $A$, then $det(A)$ equals 4 equals 8 equals 16 cannot be determined from the given information
asked Sep 13, 2018 in Linear Algebra jothee 69 views
1 vote
0 answers
3
58 views
Let $A$ be a square matrix such that $A^3 =0$, but $A^2 \neq 0$. Then which of the following statements is not necessarily true? $A \neq A^2$ Eigenvalues of $A^2$ are all zero rank($A$) > rank($A^2$) rank($A$) > trace($A$)
asked Sep 13, 2018 in Linear Algebra jothee 58 views
0 votes
1 answer
4
128 views
The value of $\lambda$ such that the system of equation $\begin{array}{} 2x & – & y & + & 2z & = & 2 \\ x & – & 2y & + & z & = & -4 \\ x & + & y & + & \lambda z & = & 4 \end{array}$ has no solution is $3$ $1$ $0$ $-3$
asked Sep 23, 2019 in Linear Algebra Arjun 128 views
...