# ISI2017-MMA-9

72 views

A function $y(x)$ that satisfies $\dfrac{dy}{dx}+4xy=x$ with the boundary condition $y(0)=0$ is

1. $y(x)=(1-e^x)$
2. $y(x)=\frac{1}{4}(1-e^{-2x^2})$
3. $y(x)=\frac{1}{4}(1-e^{2x^2})$
4. $y(x)=\frac{1}{4}(1-\cos x)$
in Calculus
edited

Rearranging the terms in the differential equation, we get :

$\frac{dy}{1-4y}=xdx$

Integrating on both sides, we get:

$\int \frac{dy}{1-4y}=\int xdx$

$\Rightarrow$   $\frac{1}{-4}\times ln(1-4y)=\frac{x^{2}}{2}+c$

Now, using the condition given in the question i.e.  $y(0)=0$,  we get  $c=0$

$\therefore$   We get  the equation as    $\frac{1}{-4}\times ln(1-4y)=\frac{x^{2}}{2}$

$\Rightarrow$    $ln(1-4y)=-2x^{2}$              $\Rightarrow$       $e^{-2x^{2}}=1-4y$

$\Rightarrow$       $y(x)=\frac{1}{4}(1-e^{-2x^{2}})$

Option B is the correct answer.

## Related questions

1
335 views
The solution of the differential equation $\frac{dy}{dx} = \frac{2xy}{x^2-y^2}$ is $x^2 + y^2 = cy$, where $c$ is a constant $x^2 + y^2 = cx$, where $c$ is a constant $x^2 – y^2 = cy$ , where $c$ is a constant $x^2 - y^2 = cx$, where $c$ is a constant
2
67 views
The area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ and lines $x=0 \text{ and } x=1$ is given by $\frac{\pi}{3}+\frac{\sqrt{3}}{2}$ $\frac{\pi}{6}+\frac{\sqrt{3}}{4}$ $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$ $\frac{\pi}{6}+\frac{\sqrt{3}}{2}$
3
51 views
The differential equation $x \frac{dy}{dx} -y=x^3$ with $y(0)=2$ has unique solution no solution infinite number of solutions none of these
1 vote
For the differential equation $\frac{dy}{dx} + xe^{-y}+2x=0$ It is given that $y=0$ when $x=0$. When $x=1$, $\:y$ is given by $\text{ln} \bigg(\frac{3}{2e} – \frac{1}{2} \bigg)$ $\text{ln} \bigg(\frac{3e}{2} – \frac{1}{4} \bigg)$ $\text{ln} \bigg(\frac{3}{e} – \frac{1}{2} \bigg)$ $\text{ln} \bigg(\frac{3}{2e} – \frac{1}{4} \bigg)$