Backward Euler method for solving the differential equation $\frac{dy}{dx}=f(x, y)$ is specified by, (choose one of the following).

$y_{n+1}=y_n+hf(x_n, y_n)$

$y_{n+1}=y_n+hf(x_{n+1}, y_{n+1})$

$y_{n+1}=y_{n1}+2hf(x_n, y_n)$

$y_{n+1}= (1+h)f(x_{n+1}, y_{n+1})$