Let AX=B be a system of n linear equations in n unknown with integer coefficient and the components of B are all integer. Consider the following (1)det(A)=1 (2)det(A)=0 (3)Solution X has integer entries (4)Solution X does not have all integer entries For the given system of linear ... 1, then 3 holds true (c)If 1, then 4 holds true (d)If 2, then 3 holds true I think (d) should be the answer.

For what values of $\lambda$ the system of equations will have $2$ linear independent solutions - $x + y + z = 0$ $(\lambda + 1) y + (\lambda + 1) z = 0$ ($\lambda^{2}- 1) z = 0$ Now the problem i'm facing is if there is $2$ Linear ... rank of matrix will be $1$. Can anyone please explain in simple why the rank of matrix should be $1$ if we need $2$ Linear Independent solution. Thankyou.