The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
0 votes
82 views
Test the consistency of the following system of equations and solve if possible

$3x + 3y +2z = 1$

$x + 2y = 4$

$10y + 3z = -2$

$2x - 3y -z = 5$
asked in Linear Algebra by Boss (34.2k points) | 82 views
0
answer consistent?
0
unique solution :hence consistent.
0

arvin and srestha what solutions you got? mine are not matching the answer

0
i did it using augmented matrix form... and than using reduced row echelon method.. which gave rank(a) =rank(a|b)= 3(no. of variable) = so i found that its consistent and has unique solution..
0
what is given ans?

1 Answer

0 votes

"If a consistent system has an infinite number of solutions, it is dependent . When you graph the equations, both equations represent the same line. If a system has no solution, it is said to be inconsistent ."

$3x+3y+2z=1$

$x+2y=4$

$10y+3z=-2$

$2x-3y-z=5$

We can write it as

$3x+3y+2z=1$

$x+12y+3z=2$

$2x-3y-z=5$

and solve them inividually

So, it will be consistent solution

answered by Veteran (108k points)

Related questions

0 votes
1 answer
2
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
48,515 questions
52,763 answers
183,377 comments
68,234 users