Can u please show how u got characteristic equation. I am getting characteristic equation of degree 1. I know its wrong, so please guide me how to find characteristic equation

Dark Mode

3,594 views

25 votes

Best answer

An Easy Procedure.

Using Eigen values, the characteristic equation we get is -

$-\lambda ^{3} + 2\lambda ^{2} -2 =0$

Using Cayley-Hamilton Theorem-

$-A^{3}+2A^{2}-2I=0$

So, $A^{-1}=\frac{1}{2}(2A-A^{2})$

Solving that we get,

$A^{-1}= \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2}\\ 0&0 &1 \\ \frac{1}{2}&\frac {1}{2} &\frac{-1}{2} \end{bmatrix}$

Using Eigen values, the characteristic equation we get is -

$-\lambda ^{3} + 2\lambda ^{2} -2 =0$

Using Cayley-Hamilton Theorem-

$-A^{3}+2A^{2}-2I=0$

So, $A^{-1}=\frac{1}{2}(2A-A^{2})$

Solving that we get,

$A^{-1}= \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2}\\ 0&0 &1 \\ \frac{1}{2}&\frac {1}{2} &\frac{-1}{2} \end{bmatrix}$

0

20 votes

A=$\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

$A_{11} = -1 , A_{12}=0 , A_{13}=-1$

$A_{21} = 1 , A_{22}=0 , A_{23}=-1$

$A_{31} = -1 , A_{32}=-2 , A_{33}=1$

$B=\begin{bmatrix} -1 & 0 & -1\\ 1& 0 & -1\\ -1& -2 & 1 \end{bmatrix}$

$adjA=B^{T}$

$adjA=\begin{bmatrix} -1 &1 & -1\\ 0& 0 & -2\\ -1& -1 & 1 \end{bmatrix}$

$|A|=-2$

$|A|^{-1}=\frac{adjA}{|A|}$

$|A|^{-1}=\begin{bmatrix} \frac{1}{2} & \frac{-1}{2} &\frac{1}{2} \\ 0& 0 & 1\\ \frac{1}{2}&\frac{1}{2} & \frac{-1}{2} \end{bmatrix}$

$A_{11} = -1 , A_{12}=0 , A_{13}=-1$

$A_{21} = 1 , A_{22}=0 , A_{23}=-1$

$A_{31} = -1 , A_{32}=-2 , A_{33}=1$

$B=\begin{bmatrix} -1 & 0 & -1\\ 1& 0 & -1\\ -1& -2 & 1 \end{bmatrix}$

$adjA=B^{T}$

$adjA=\begin{bmatrix} -1 &1 & -1\\ 0& 0 & -2\\ -1& -1 & 1 \end{bmatrix}$

$|A|=-2$

$|A|^{-1}=\frac{adjA}{|A|}$

$|A|^{-1}=\begin{bmatrix} \frac{1}{2} & \frac{-1}{2} &\frac{1}{2} \\ 0& 0 & 1\\ \frac{1}{2}&\frac{1}{2} & \frac{-1}{2} \end{bmatrix}$