In last column of above truth table $p \Longleftrightarrow q \rightarrow p \to \lnot q$ doesn’t have all 1’s.Therefore, it is not a tautology
If It is a tautology(all 1’s in last column) then $p \Longleftrightarrow q$ implies $p \to \lnot q$
i.e., $ \left( p \Longleftrightarrow q~~~ \rightarrow ~~~ p \to \lnot q \right) \equiv True $
But Now it is not tautology so $p \Longleftrightarrow q$ does not implies $p \to \lnot q$
ie. $\left( p \Longleftrightarrow q ~~~ \not \rightarrow ~~~p \to \lnot q \right) \equiv True$