The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
0 votes
54 views

We know,

the eigen value for upper triangular/lower triangular/diagonal matrices are the diagonal elements of the matrix.

https://gateoverflow.in/858/gate2002-5a

This question,

https://gateoverflow.in/1174/gate2005-49

If apply row transformation to convert it into upper triangular matrix then my eigen values will be diagonals, but the result is not correct. I know for determinant, applying row transformation or column transformation value of the determinant remains the same.

Why can't we make the given matrix to upper triangular matrix, so that eigen values will be equal to the elements in the diagonals?

 

in Linear Algebra by Active (3k points) | 54 views
+2

the eigen value for upper triangular/lower triangular/diagonal matrices are the diagonal elements of the matrix.

it is true.

 

I know for determinant, applying row transformation or column transformation value of the determinant remains the same.

if Ri ---> k.Ri , then determinant is changed.

if Ri ---> Ri + (k.Rj) , then Determinant is not changed.

 

Note that, if A and B , Determinants is equal, then Eigen values are need not to be same for A and B.

$\begin{pmatrix} 2 & -1\\ -4 & 5 \end{pmatrix}$   ---------> (i)

after applying row transformation R1 ---> R1 + ($\frac{1}{5}$R2)

$\begin{pmatrix} \frac{6}{5} & 0\\ -4 & 5 \end{pmatrix}$  ---------> (ii)

(i) and (ii) have determinant value same(=6),

but eigen values of (i) is 1,6 and eigen values of (ii) is  $\frac{6}{5} $,5 which are different.

0
thanks bro

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
49,807 questions
54,730 answers
189,326 comments
79,940 users