edited by
4,307 views
25 votes
25 votes

Let $n$ be a large integer. Which of the following statements is TRUE?

  1. $2^{\sqrt{2\log n}}< \frac{n}{\log n}< n^{1/3}$
  2. $\frac{n}{\log n}< n^{1/3}< 2^{\sqrt{2\log n}}$
  3. $2^\sqrt{{2\log n}}< n^{1/3}< \frac{n}{\log n}$
  4. $n^{1/3}< 2^\sqrt{{2\log n}}<\frac{n}{\log n}$
  5. $\frac{n}{\log n}< 2^\sqrt{{2\log n}}<n^{1/3}$
edited by

4 Answers

Best answer
18 votes
18 votes
Answer will be $(C)$.

Take $n=2^{1024}$

Now,   $2^{\sqrt{(2 \log n)}} \approx 2^{45}$

          $n^{\frac{1}{3}} \approx 2^{341}$

          $n / \log n = 2^{1024}/1024 \approx 2^{1014}$

Just one value is not enough to confirm growth rate. So, take $n = 1024$.

Now,  $2^{\sqrt{(2 \log n)}} \approx 2^{4}$

          $n^{\frac{1}{3}}\approx 2^{3}$

          $n / \log n = 2^{10}/10 \approx 2^{7}$

So, as $n$ increases, the gap between second and third function increases and also the second function overtakes the first. So, $f1 < f2 < f3$.
edited by
0 votes
0 votes
$f_1 = 2^\sqrt{2 \log n} = e^{\log 2^\sqrt{2 \log n}} =e^{\sqrt{2 \log n} \log 2} $

$f_2 = n^{1/3} = e^{\log n^{1/3}} = e^{\frac{\log n}{3}}$

Now, $\lim_{n \rightarrow \infty } \frac{f_1}{f_2} = \lim_{n \rightarrow \infty } e^{\sqrt{2 \log n} \log 2 – \frac{\log n}{3}}$

Here, $\sqrt{2 \log n} \log 2 – \frac{\log n}{3} \rightarrow -\infty$ when $n \rightarrow \infty$

So, $\lim_{n \rightarrow \infty } \frac{f_1}{f_2} =0$

Hence, $f_1 < < f_2$

Now, $f_3 = \frac{n}{\log n} = e^{\log (n* (\log n)^{-1})} = e^{\log n – \log \log n}$

$\lim_{n \rightarrow \infty } \frac{f_3}{f_2} = e^{\log n – \log \log n – \frac{\log n}{3}} = e^{\frac{2\log n}{3}  – \log \log n}$

When $n \rightarrow \infty, \frac{2\log n}{3}  – \log \log n \rightarrow \infty$

So, $\lim_{n \rightarrow \infty } \frac{f_3}{f_2} = \infty$

Hence, $f_2 < < f_3$

Therefore, $f_1 < < f_2 < < f_3$
Answer:

Related questions

18 votes
18 votes
3 answers
1
makhdoom ghaya asked Nov 2, 2015
3,712 views
Consider the quick sort algorithm on a set of $n$ numbers, where in every recursive subroutine of the algorithm, the algorithm chooses the median of that set as the pivot...