GATE CSE
First time here? Checkout the FAQ!
x
+6 votes
274 views

A set $S$ together with partial order $\ll$ is called a well order if it has no infinite descending chains, i.e. there is no infinite sequence $x_1, x_2,\ldots$ of elements from $S$ such that $x_{i+1} \ll x_i$ and $x_{i+1} \neq x_i$ for all $i$.

Consider the set of all words (finite sequence of letters $a - z$), denoted by $W$, in dictionary order.

  1. Between $``aa"$ and $``az"$ there are only $24$ words.
  2. Between $``aa"$ and $``az"$ there are only $2^{24}$ words.
  3. $W$ is not a partial order.
  4. $W$ is a partial order but not a well order.
  5. $W$ is a well order.
asked in Set Theory & Algebra by Veteran (39.7k points) 255 1306 1938 | 274 views

3 Answers

+5 votes

Answer -> E)well order

Minimal Element is 'a', it is less than all elements !

a) False, after aa, we can have ab. Then aba,abb,abc.. Not limited to 24

b) False. after aa, we can have ab,aba,abc.. In fact ab(a-z)*. Not limited to 224

C)False. Why not partial order ? Dictionary order  is partial order ! It is Reflexive, Antysymmetric & Transitive.  Even defination of wikipedia says it is  !

D) False.Dictionary order is well order .

Defination of Dictionary order -> Ref -> https://en.wikipedia.org/wiki/Lexicographical_order

Given two partially ordered sets A and B, the lexicographical order on the Cartesian product A × B is defined as

(a,b) ≤ (a′,b′) if and only if a < a′ or (a = a′ and bb′).
The result is a partial order. If A and B are each totally ordered, then the result is a total order as well. The lexicographical order of two totally ordered sets is thus a linear extension of their product order.
 
 
 

 

answered by Veteran (45.6k points) 169 533 843
Isn't the sequence $``z" \;\gg\; ``yz" \;\gg\; ``yyz" \;\gg\; ``yyyz" \cdots$ a sequence such that $x_{i+1} \ll x_i$ and $x_{i+1} \neq x_i$?

Is it possible to know how many words are there from aa to az

0 votes
Ans will be (c)W is not partial order
answered by Veteran (65k points) 35 222 625
why?
Because W={aa,ab...........az,ba,bb,............bz,.............za,zb,......zz}

all are possible

if we allow {ab,ba} then it will be a symmetric relation . So partial order is not possible
The order is "dictionary" and it is specified in question. So, ab << ba.
ok then dictionary order means ba,ca,cb those are not possible right?

and well order set means chains like 1-----2----------4-------12, right?

plz ans here
why "ba", "ca" etc not possible? Any word is possible in a dictionary.

aaaaaa << ba

So, options A and B are false.

I'm not sure of well order- but answer here is well order.
yes it is woset because it is toset and lowest element is fixed - 'a'.

Is it possible to know how many words are there from aa to az

0 votes
E will be the answer .

a> more than 24 words are possible

b>more than 2^24 possible bcz its dictionary order so its not limited

c> dictionary order is always partial  ,because  we can go to 'B' only after 'A' ,so its considered as  a < b

so cant be symetric .so false

d> partial is true here but  not well order is false because in dictionary always least element 'A' is there. so False

e> true  bcz it is well order
answered by Loyal (2.7k points) 2 11 30

Related questions



Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
Top Users Oct 2017
  1. Arjun

    23346 Points

  2. Bikram

    17058 Points

  3. Habibkhan

    8142 Points

  4. srestha

    6254 Points

  5. Debashish Deka

    5438 Points

  6. jothee

    4968 Points

  7. Sachin Mittal 1

    4772 Points

  8. joshi_nitish

    4298 Points

  9. sushmita

    3964 Points

  10. Rishi yadav

    3794 Points


Recent Badges

100 Club stdntlfe
Nice Question thor
100 Club Vamp thehacker
Popular Question LavTheRawkstar
Notable Question shubham vashishtha
Nice Answer Habibkhan
Good Question jenny101
Regular Ashish Subscription
Famous Question Akash Kanase
Photogenic guptasaurabh9868
27,301 questions
35,155 answers
83,985 comments
33,244 users