464 views
1 votes
1 votes
The equations x + 4y + 8z = 16, 3x + 2y + 4z = 12 and 4x + y + 2z = 10 have

(A) Only one solution

(B) Two solutions

(C) Infinitely many solutions

(D) No solution

2 Answers

2 votes
2 votes

Given that the system of  equations $:x + 4y + 8z = 16$---->(1)

                                                                  $3x + 2y + 4z = 12$ ----->(2)

                                                                  $4x + y + 2z = 10$-------->(3)

Now we can in the form of Matrix $A=\begin{bmatrix} 1 &4 &8 \\ 3 &2 &4 \\ 4 &1 &2 \end{bmatrix}$ and $B=\begin{bmatrix} 16\\12 \\ 10 \end{bmatrix}$

Let us write in the form of Augmented Matrix $[A:B]$=$\begin{bmatrix} 1 &4 &8:16 \\ 3 &2 &4:12 \\ 4 &1 &2:10 \end{bmatrix}$ 

Now perform some operation on $R_{3}$

                                                      $R_{3}\rightarrow R_{3}-R_{2}$

                                $[A:B]$=$\begin{bmatrix} 1 &4 &8:16 \\ 3 &2 &4:12 \\ 1 &-1 &-2:-2 \end{bmatrix}$ 

Now perform some operation on $R_{2}$

                                                      $R_{2}\rightarrow R_{2}-R_{1}$

                              $[A:B]$=$\begin{bmatrix} 1 &4 &8:16 \\ 2 &-2 &-4:-4 \\ 1 &-1 &-2:-2 \end{bmatrix}$

  Now again perform some operation on $R_{2}$

                                       $R_{2}\rightarrow \frac{1}{2}R_{2}$

               $[A:B]$=$\begin{bmatrix} 1 &4 &8:16 \\ 1 &-1 &-2:-2 \\ 1 &-1 &-2:-2 \end{bmatrix}$

Now perform some operation on $R_{3}$

                                                      $R_{3}\rightarrow R_{3}-R_{2}$

            $[A:B]$=$\begin{bmatrix} 1 &4 &8:16 \\ 1 &-1 &-2:-2 \\ 0 &0 &0: 0\end{bmatrix}$

                  Rank of $A=2$ and Rank of $[A: B]=2,$ which is equal.

                    $r(A)=r([A:B])=2$ and number of unknowns(Variables)$=3$

                    $r(A)=r([A:B]) <Unknowns$$(Variables)$  [This is the condition of infinitely many numbers of solutions]

                     $2<3$

Case$(1)$ If  $r(A)\neq r([A:B])$ there is no solution.

Case$(2)$ If  $r(A)= r([A:B])=Unknowns$$(No.$ $of$ $variables)$ there are Unique Solution.

Case$(3)$ If $r(A)=r([A:B]) <Unknowns$$(Variables)$ there are Infinitely many solutions.

 In this case, if we want to know how to get many numbers of the solution:

 Let say number of unknowns(Variables)$=n$ and rank of $r(A)=r([A:B])=r$,we can assign $n-r$ Linearly Independent value to the variables,and find out the many solutions. 

edited by

No related questions found