Customers as $C$
Shops as $S$
Sname |
$s_{1}$ |
$s_{2}$ |
$s_{3}$ |
Buys as $B$
Cname |
Sname |
A |
$s_{1}$ |
B |
$s_{2}$ |
C |
$s_{1}$ |
D |
$s_{1}$ |
In this example I take
$s_{1}$ is the Shop name, who have at least three Customers(A,C,D)
$s_{2}$ is the Shop name, who have at least one Customers(B)
$s_{3}$ is the Shop name who do not have any Customers(the names of shops that have no customers at all)
$(A)\Pi_{Sname}B$
$(B)S-B$
It is not possible, because it is not Subtraction compatible.
$(C)S-\Pi_{Sname}B$
$\Pi_{Sname}B$
Now, $S-\Pi_{Sname}B$
So,this is true.
$(D)S-\Pi_{Sname}((C\times S)-B)$
Now, $C\times S$
Cname |
Sname |
A |
$s_{1}$ |
A |
$s_{2}$ |
A |
$s_{3}$ |
B |
$s_{1}$ |
B |
$s_{2}$ |
B |
$s_{3}$ |
C |
$s_{1}$ |
C |
$s_{2}$ |
C |
$s_{3}$ |
D |
$s_{1}$ |
D |
$s_{2}$ |
D |
$s_{3}$ |
Now,$(C\times S)-B$
Cname |
Sname |
A |
$s_{2}$ |
A |
$s_{3}$ |
B |
$s_{1}$ |
B |
$s_{3}$ |
C |
$s_{2}$ |
C |
$s_{3}$ |
D |
$s_{2}$ |
D |
$s_{3}$ |
Now,$\Pi_{Sname}((C\times S)-B)$
Sname |
$s_{1}$ |
$s_{2}$ |
$s_{3}$ |
Here clearly see $S-\Pi_{Sname}((C\times S)-B)=\phi$
So,$(C)$ is the right choice
please correct me if i''m wrong.