# asymptotic notations

0 votes
86 views
√logx  = O(loglogx) is it true or false?

and explain why?
0
False. for x>0 =>$\sqrt{\log x}$ > $\log\left(\log x\right)$
1

take x = 21024

√logx = √log221024   = 2512

log2log2x  = log2log2 21024

=log21024

=10

So we can say that √logx > log2log2x  and hence ur given statement is false

0
√logx= O(loglogx)

apply log on both sides

1/2* logx <= logloglogx

which is false
0

False.

√logx > log2log2

## Related questions

1 vote
1 answer
1
163 views
Q1) f(n) = n^(1-sin n) g(n) = n^(1+cos n) Relation between them ? Q2) f(n) = n^(1-sin n) g(n) = n^(2+cos n ) Relation between them ?
1 vote
3 answers
2
223 views
Which of the following is not true in the function $f(n)=2^{n-4}$? $f(n)$=Θ($2^{n+3}$) $f(n)$=Ω($n^{1000}$) $f(n)$=Ο($2^{n-10}$) $f(n)$=$None$
0 votes
1 answer
3
210 views
Consider the following function $f(x)$ = $x^8$+6$x^7$-9$x^5$-$x^4$+2$x^2$-18. Which of the following is true if x is greater than 56? $f(x)$ = O($x^8$) $f(x)$ = Ω($x^8$) $f(x)$ = θ($x^8$) $f(x)$ = None of the above.
1 vote
1 answer
4
184 views
Identify the FALSE statement: $A)$ $f(n)=\theta(f(\frac{n}{2})$ $implies$ $f(n^{2})=\theta(f(\frac{n^{2}}{2}))$ $B)$ $f(n)=O(g(n))$ $implies$ $log(f(n))=O(log(g(n)))$ where $n\geq2$ $C)$ $f(n)=O(g(n))$ $implies$ $2^{f(n)}=O(2^{g(n)})$ $D)$ $f(n)+g(n)=\theta(Max(f(n),g(n)))$