The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
+11 votes
786 views

In the interval $[0, \pi]$ the equation $x=\cos x$ has 

  1. No solution

  2. Exactly one solution

  3. Exactly two solutions

  4. An infinite number of solutions

asked in Calculus by Veteran (59.5k points)
edited by | 786 views

2 Answers

+20 votes
Best answer

Therefore Answer is $B$.

(Graph is not to exact scale. one point of intersection as our range is between $0$ to pi, in case it is -pi to pi, we will have two point of intersections )

answered by Boss (42.8k points)
edited by
+1
wowwwwwwwwwwwwwww... awesome soln
0
waah akash sir
+8 votes
ans is B.

if you consider $x=0$ then $\cos x=1$

now if $x=\frac{\pi}{4} = 0.785$ then $\cos x=0.7071$

for some $x$ value $x=\cos x$

after this x is increasing and cosx is decreasing. so we can say exactly one solution.

EDIT-

It is very easy to show that the equation $x=\cos x $ has a unique solution. For example take $f(x) = x - \cos x$ and notice that $f'(x) = 1+\sin x \ge 0$ (equality holding in isolated points) so $f(x)$ is strictly increasing and hence the equation can have at most one solution.

At $x=0$, $f(x)$ is $\lt 0$ and at $x=\frac{\pi}{2}$, $f(x)$ is $\gt 0$, and function is continious (difference of two continuous functions is continuous). Therefore there is solution in $x \in \left [ 0,\frac{\pi}{2} \right ]$, hence there is a solution in $[0. \pi]$
answered by Loyal (8.2k points)
edited by


Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true

39,512 questions
46,664 answers
139,706 comments
57,481 users