recategorized by
4,027 views
12 votes
12 votes

A unit vector perpendicular to both the vectors $a=2i-3j+k$ and $b=i+j-2k$ is:

  1. $\frac{1}{\sqrt{3}} (i+j+k)$
  2. $\frac{1}{3} (i+j-k)$
  3. $\frac{1}{3} (i-j-k)$
  4. $\frac{1}{\sqrt{3}} (i+j-k)$
recategorized by

2 Answers

Best answer
14 votes
14 votes

The Cross Product of $a$ and $b$ is a unit vector perpendicular to both $a$ and $b$

The cross product of $a=<a_1,a_2,a_3>$ and $b=<b_1,b_2,b_3>$ is

$a \times b = \begin{vmatrix} i &j &k \\ a_1&a_2 &a_3 \\ b_1&b_2 &b_3 \end{vmatrix}$

From question , $a_1 =2, a_2=-3, a_3=1, b_1=1,b_2=1,b_3=-2$

$a \times b = \begin{vmatrix} i &j &k \\ 2&-3 &1 \\ 1&1 &-2 \end{vmatrix}$

           $=i\begin{vmatrix} -3 &1 \\ 1& -2 \end{vmatrix} -j\begin{vmatrix} 2 &1 \\ 1& -2 \end{vmatrix}+k\begin{vmatrix} 2 &-3 \\ 1& 1 \end{vmatrix}$

           $=5i+5j+5k$

Hence the vector $a \times b=5i+5j+5k=<5,5,5>$ is a vector perpendicular to $ a=2i−3j+k$ and $b=i+j−2k$

The unit length of the vector $a \times b = \sqrt { 5^2+5^2+5^2} = \sqrt {5*5*3} = 5 \sqrt 3$

$\therefore$ A unit vector perpendicular to both $ a=2i−3j+k$ and $b=i+j−2k$  is

                 $\frac{<5,5,5>}{5\sqrt 3} = \frac{<1,1,1>}{\sqrt 3} = \frac{1}{\sqrt 3} i+j+k$

Hence Option $A.$ is correct answer.


Reference :- http://www.leadinglesson.com/problem-on-finding-a-vector-perpendicular-to-two-vectors

selected by
13 votes
13 votes

Answer should be $A$.

Dot product of two perpendicular vector is $0.$
Vector given in option A gives $0$ dotproduct with vector $b$ while any other vector is not giving $0$ in dotproduct. Therefore answer should be $A.$

To find the perpendicular unit vector to two vectors please see:
http://www.leadinglesson.com/problem-on-finding-a-vector-perpendicular-to-two-vectors

edited by
Answer:

Related questions

23 votes
23 votes
7 answers
1
Kathleen asked Oct 8, 2014
4,946 views
The rank of the following $(n+1) \times (n+1)$ matrix, where $a$ is a real number is $$ \begin{bmatrix} 1 & a & a^2 & \dots & a^n \\ 1 & a & a^2 & \dots & a^n \\ \vdots ...
30 votes
30 votes
5 answers
2
Arjun asked Feb 14, 2017
13,888 views
Let $u$ and $v$ be two vectors in $\mathbf{R}^{2}$ whose Euclidean norms satisfy $\left \| u \right \| = 2\left \| v \right \|$. What is the value of $\alpha$ such that $...
35 votes
35 votes
2 answers
3
go_editor asked Sep 28, 2014
10,576 views
If $V_1$ and $V_2$ are $4$-dimensional subspaces of a $6$-dimensional vector space $V$, then the smallest possible dimension of $V_1 \cap V_2$ is _____.
33 votes
33 votes
4 answers
4