edited by
1,434 views
4 votes
4 votes

Let $L$ be a line on the two dimensional plane. $L'$s intercepts with the $X$ and $Y$ axes are respectively $a$ and $b$. After rotating the co-ordinate system (and leaving $L$ untouched), the new intercepts are $a'$ and $b'$ respectively. Which of the following is TRUE?

  1. $\frac{1}{a}+\frac{1}{b}=\frac{1}{a}+\frac{1}{b}$.
  2. $\frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{a'^{2}}+\frac{1}{b'^{2}}$.
  3. $\frac{b}{a^{2}}+\frac{a}{b^{2}}=\frac{b'}{a'^{2}}+\frac{a}{b'^{2}}$.
  4. $\frac{b}{a}+\frac{a}{b}=\frac{b'}{a'}+\frac{a'}{b'}$.
  5. None of the above.
edited by

1 Answer

Best answer
6 votes
6 votes

If $X-$intercept is $a$ and $Y-$intercept is $b$ then equation of line on $X-Y$ plane is

$$\frac{x}{a} + \frac{y}{b} = 1 \quad \to (1)$$

We can prove it by considering two points on the line, $(a,0)$ as $(x_1,y_1)$ and $(0,b)$ as $(x_2,y_2)$

So, equation of line will be : $y - y_1 = \left ( \frac{y_2-y_1}{x_2-x_1} \right )(x-x_1)$

$\Rightarrow (y - 0) = \left ( \frac{b-0}{0-a} \right )(x-a)$

$\Rightarrow -ay = bx - ab$

On dividing by $ab$ and rearranging,

$\Rightarrow$ $\frac{x}{a} + \frac{y}{b} = 1$

Now, if a point $(x,y)$ lies on the $X-Y$ plane and if we rotate the co-ordinate system by $\theta$ degree then this point becomes $(x',y')$ on new co-ordinate system and relationship is given by :

$\begin{bmatrix} \cos\theta & \sin\theta \\  - \sin\theta & \cos\theta \end{bmatrix}\begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} x'\\y' \end{bmatrix}$

So,

  • $x' = x\cos\theta +y\sin\theta$ and
  • $y'= - x\sin\theta + y\cos\theta$

Now, on the new co-ordinate system, equation on line will be :

$\frac{x'}{a'} + \frac{y'}{b'} = 1$

$\Rightarrow$ $\frac{ x\cos\theta +y\sin\theta}{a'} + \frac{-x\sin\theta + y\cos\theta}{b'} = 1$

$\Rightarrow x\left ( \frac{\cos\theta}{a'} - \frac{\sin\theta}{b'} \right ) + y\left ( \frac{\sin\theta}{a'} + \frac{\cos\theta}{b'} \right ) = 1$

On comparing with equation $(1),$

$\left ( \frac{\cos\theta}{a'} + \frac{-\sin\theta}{b'} \right ) = \frac{1}{a}$ and

$\left ( \frac{\sin\theta}{a'} + \frac{\cos\theta}{b'} \right ) = \frac{1}{b}$

Now, on squaring both sides and adding above $2$ equations :-

$\left ( \frac{1}{a^2} + \frac{1}{b^2} \right ) = \left ( \frac{\cos\theta}{a'} + \frac{-\sin\theta}{b'} \right )^{2} + \left ( \frac{\sin\theta}{a'} + \frac{\cos\theta}{b'} \right )^2$

$ \Rightarrow\left ( \frac{1}{a^2} + \frac{1}{b^2} \right ) = $ $\frac{\cos^{2}\theta}{a'^2} + \frac{\sin^2\theta}{b'^2} -  \frac{2\sin\theta \cos\theta}{a'b'} + \frac{\sin^2\theta}{a'^2} + \frac{\cos^2\theta}{b'^2} + \frac{2\sin\theta \cos\theta}{a'b'}$

$ \Rightarrow \frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{a'^2} + \frac{1}{b'^2}$

So, Answer is (b)

edited by
Answer:

Related questions

15 votes
15 votes
4 answers
2
13 votes
13 votes
2 answers
3
makhdoom ghaya asked Jan 25, 2017
4,852 views
Find the area bounded by the lines $3x + 2y=14, 2x - 3y = 5$ in the first quadrant.$14.95$$15.25$$15.70$$20.35$
21 votes
21 votes
2 answers
4
Akash Kanase asked Feb 16, 2016
10,739 views
If $y=5x^2+3$, then the tangent at $x=0$, $y=3$passes through $x=0,y=0$has a slope of $+1$is parallel to the $x$-axishas a slope of $-1$