retagged by
2,936 views
25 votes
25 votes

Three dice are rolled independently. What is the probability that the highest and the lowest value differ by $4$?  

  1. $\left(\dfrac{1}{3}\right)$    
  2. $\left(\dfrac{1}{6}\right)$  
  3. $\left(\dfrac{1}{9}\right)$  
  4. $\left(\dfrac{5}{18}\right)$  
  5. $\left(\dfrac{2}{9}\right)$
retagged by

7 Answers

0 votes
0 votes
difference highest and lowest is 4.
1 (1,2,3,4,5) 5
+
2(2,3,4,5,6)6
=(3!* 1.5.1 + 3!*1.5.1)/6.6.6
=2.6.5/6.6.6
=10/36=5/18
0 votes
0 votes

Sample space be $S = \{(d_1, d_2, d_3) \ | \ 1 \le d_1,d_2,d_3 \le 6\}$ where $d_i$ correspond to $i^{th}$ dice. 

$\underline{\textbf{Case 1:}} \text{ }$ 

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=1 \land d_k=5 \land z \neq j \land z \neq k\Longrightarrow \forall_{2\le m\le 4} \ d_z = m$

In other way, we write it as $\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^3C_1}_{\text{choosing }d_z} = 18$

And,

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=2 \land d_k=6 \land z \neq j \land z \neq k\Longrightarrow \forall_{3\le m\le 5} \ d_z = m$

In other way, we write it as $\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^3C_1}_{\text{choosing }d_z} = 18$

$\underline{\textbf{Case 2:}}$

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=1 \land d_k=5 \land z \neq j \land z \neq k\Longrightarrow \forall_{m \in \{1,5\}} \ d_z = m$

In other way, we write it as $\dfrac{\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^2C_1}_{\text{choosing }d_z}}{\underbrace{2!}_{\text{overcounting; e.g. (1,1,5) counted twice}}} = 6$

And, 

$\forall_{1 \le j,k,z \le 3} \ j\neq k \land  d_j=2 \land d_k=6 \land z \neq j \land z \neq k\Longrightarrow \forall_{m \in \{2,6\}} \ d_z = m$

In other way, we write it as $\dfrac{\underbrace{^3C_2}_{\text{selecting j, k}} \times \underbrace{2!}_{\text{arranging j,k}} \times \underbrace{^2C_1}_{\text{choosing }d_z}}{\underbrace{2!}_{\text{overcounting; e.g. (2,2,6) counted twice}}} = 6$

$\underline{\textbf{Total}}$

$\text{Favourable Cases} = 18+18+6+6 = 48$

$|S| = 6^3 = 216$

$\text{Probability} = \dfrac{48}{216} = \dfrac{2}{9}=0.\overline{2}$ 

–1 votes
–1 votes
1/9 C is answer .  there will be 24 such permutations having diff. of 4 in max. and min. in dies

24/216=1/9
Answer:

Related questions

23 votes
23 votes
3 answers
1
14 votes
14 votes
1 answer
2
makhdoom ghaya asked Oct 17, 2015
1,841 views
Let $X$ and $Y$ be two independent and identically distributed random variables. Then $P\left ( X Y \right )$ is.$\frac{1}{2}$10$\frac{1}{3}$Information is insufficient.
19 votes
19 votes
4 answers
3
makhdoom ghaya asked Oct 17, 2015
5,879 views
Assume that you are flipping a fair coin, i.e. probability of heads or tails is equal. Then the expected number of coin flips required to obtain two consecutive heads for...
14 votes
14 votes
4 answers
4
makhdoom ghaya asked Oct 17, 2015
2,736 views
The probability of three consecutive heads in four tosses of a fair coin is$\left(\dfrac{1}{4}\right)$$\left(\dfrac{1}{8}\right)$$\left(\dfrac{1}{16}\right)$$\left(\dfrac...