Consider a relation R(A, B) that contains r tuples, and a relation S(B, C) that contains s tuples; assume r > 0 and s > 0. Make no assumptions about keys. For the following relational algebra expression, in terms of r and s the minimum and maximum number of tuples that could be in the result?

Suppliers(sid, sname, address) Parts(pid, pname, color) Catalog(sid, pid, cost) Find the pids of the most expensive parts supplied by suppliers named Yosemite Sham

Given two relations R1 and R2, where R1 contains N1 tuples, R2 contains N2 tuples, and N2>N1> 0, give the minimum and maximum possible sizes (in tuples) for the result relation produced by each of the following relational algebra expressions. In each case, state any assumptions about ... difference) $R1 X R2$ (cartesian product) $σa=5(R1)$ (selection) $\pi a(R1)$ (projection) $R1/R2$ (division)