1.2k views

The matrices $\begin{bmatrix} \cos\theta && -\sin\theta \\ \sin\theta && \cos\theta \end{bmatrix}$ and $\begin{bmatrix} a && 0\\ 0&& b \end{bmatrix}$ commute under multiplication

1. if $a=b \text{ or } \theta = n\pi, n$ an integer
2. always
3. never
4. if $a \cos\theta = b \sin\theta$

recategorized | 1.2k views
–1
Ans. a

Answer: $A$

​$\begin{bmatrix} \cos (\theta)&- \sin (\theta) \\ \sin (\theta)&\cos (\theta) \end{bmatrix}*\begin{bmatrix} a& 0 \\ 0&b \end{bmatrix}=\begin{bmatrix} a\cos (\theta)&{-b}\sin (\theta) \\a \sin (\theta)&b \cos (\theta) \end{bmatrix}$

and

​$\begin{bmatrix} a& 0 \\ 0&b \end{bmatrix}*\begin{bmatrix} \cos (\theta)&- \sin (\theta) \\ \sin (\theta)&\cos (\theta) \end{bmatrix}=\begin{bmatrix} a\cos (\theta)&{-a}\sin (\theta) \\b \sin (\theta)&b \cos (\theta) \end{bmatrix}$

The multiplication will commute if

$a \sin (\theta) = b \sin (\theta)$  or a = b or $\theta = {n\pi}.$
by Boss (33.9k points)
edited
0
Pls Explain How it Matrix Multication Which Means Before the Multipication Step ?
0

Yes (A) is correct option, because $sin(\theta)$ will be 0, ​​if $\theta$=n*π, n is an integer.

0
What if we take a and b common from both columns respectively in first multiplication

And we take a and b common from both rows respectively in second multiplication

Then answer should be b. Why are we not doing this?
0

We can not take common from a row or column in matrix like in determinant. In matrix we have to take common from each cell of the matrix that is why your approach is wrong. See this link for better understanding.

https://math.stackexchange.com/questions/2616865/can-i-extract-common-factor-from-a-column-in-matrix

0
Thanks
+1 vote
by (169 points)
edited
0
this link is not related to given question
0
Sorry,

changed the link have a look