1,287 views

1 Answer

Best answer
0 votes
0 votes

Given that $A=\begin{bmatrix} 1 &0 &0 \\ i &\frac{-1+i\sqrt{3}}{2} &0 \\ 0& 1+2i & \frac{-1-i\sqrt{3}}{2} \end{bmatrix}$

We know that cube root of unity

$Z^3=1$

We get $Z=1,\frac{-1+i\sqrt{3}}{2},\frac{-1-i\sqrt{3}}{2}$

            $Z=1,w,w^{2}$

and we know that $1+w+w^{2}=0,w^{3}=1$

$A^{2}=\begin{bmatrix} 1 &0 &0 \\ i &\frac{-1-i\sqrt{3}}{2} &0 \\ 0& 1+2i & \frac{-1+i\sqrt{3}}{2} \end{bmatrix}$

$A^{3}=\begin{bmatrix} 1 &0 &0 \\ i &\frac{-1+i\sqrt{3}}{2} &0 \\ 0& 1+2i & \frac{-1-i\sqrt{3}}{2} \end{bmatrix}$

-------------------------------------------------------------------------------------------------------------------

-------------------------------------------------------------------------------------------------------------------

$A^{101}=\begin{bmatrix} 1 &0 &0 \\ i &\frac{-1+i\sqrt{3}}{2} &0 \\ 0& 1+2i & \frac{-1-i\sqrt{3}}{2} \end{bmatrix}$

$A^{102}=\begin{bmatrix} 1 &0 &0 \\ i &\frac{-1-i\sqrt{3}}{2} &0 \\ 0& 1+2i & \frac{-1+i\sqrt{3}}{2} \end{bmatrix}$

                         $(OR)$

$A=\begin{bmatrix} 1 &0 &0 \\ i &w&0 \\ 0& 1+2i & w^{2} \end{bmatrix}$

$A^{2}=\begin{bmatrix} 1 &0 &0 \\ i &w^{2} &0 \\ 0& 1+2i &w \end{bmatrix}$

$A^{3}=\begin{bmatrix} 1 &0 &0 \\ i &w&0 \\ 0& 1+2i & w^{2} \end{bmatrix}$

-----------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------------

 

$A^{101}=\begin{bmatrix} 1 &0 &0 \\ i &w&0 \\ 0& 1+2i & w^{2} \end{bmatrix}$

$A^{102}=\begin{bmatrix} 1 &0 &0 \\ i &w^{2} &0 \\ 0& 1+2i &w \end{bmatrix}$

Trace of the matrix$(T_{r})=$sum of the leading diagonal elements.

                            $T_{r}=1+w^{2}+w=0$

selected by

Related questions

1 votes
1 votes
0 answers
1
Balaji Jegan asked Dec 10, 2018
333 views
0 votes
0 votes
0 answers
2
Balaji Jegan asked Dec 11, 2018
343 views
0 votes
0 votes
1 answer
3
monali asked Feb 1, 2016
1,400 views
1 votes
1 votes
0 answers
4
Balaji Jegan asked Dec 10, 2018
263 views