The Gateway to Computer Science Excellence
0 votes
110 views

GO2019-FLT1-59 Assume the initial values of $K0$, $Q_0$ and $Q_1$ to be $1$.
Which of the following state transition tables correctly correspond to the circuit given above? (Note: $Q_{kN}$ and $Q_{kN+1}$ represent current and next state respctively)

 

  1. $\begin{array}{|c|c|c|c|} \hline Q_{1N} & Q_{0N} & Q_{1N+1} & Q_{0N+1} \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline \end{array}$
  2. $\begin{array}{|c|c|c|c|} \hline Q_{1N} & Q_{0N} & Q_{1N+1} & Q_{0N+1} \\ \hline 1 & 1 & 0 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline \end{array}$
  3. $\begin{array}{|c|c|c|c|} \hline Q_{1N} & Q_{0N} & Q_{1N+1} & Q_{0N+1} \\ \hline 1 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 1 \\ \hline \end{array}$
  4. $\begin{array}{|c|c|c|c|} \hline Q_{1N} & Q_{0N} & Q_{1N+1} & Q_{0N+1} \\ \hline 1 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ \hline 0 & 1 & 1 & 1 \\ \hline \end{array}$

 

in Others by Active (2.5k points)
edited by | 110 views
0
Here K0= 1,it is not mentioned.
0
i am getting a is this correct
0
Q0 = Q1'Q0'+K0'Q0'

Q1 = Q0'Q1'+Q0Q1
0

@sandygate

yes, A is correct

1 Answer

0 votes

(A) will be the answer

 

by Junior (977 points)
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,666 questions
56,167 answers
193,833 comments
93,994 users