Outer Loop runs : log (n) times = {1 , 2 , 4 ,8 .....}
for(i = 0 ;i<=n ; i+=2) = [0 , 2, 4 , 6 ,8 ....] --- > It even number times executed therefore --- > n/2 times executed
for(j=1 ; j<n ; jx=2) ---> runs log n times
sequence goes like = $\frac{n}{2} + log (n) + 2 (\frac{n}{2} + log n) + 4 (\frac{n}{2} + logn) ..... log n times$
$\frac{n}{2} (1+2+4+8...logn times)$ + $log n (1+2+4+8...logn times)$
= $\bigcirc (n^{2} + n logn) = \bigcirc (n^{2})$