@kauray
particular array location can be calculated as the column number of the element we are looking for summing with the row×column number of elements.
You mean A[i][j]=B +size(j + #rows x column no.).. ?
For column major don't we do like,
Address(A[i][j])=B +size(i + #rows x column no.)
Elaborately,
$Address(A[i_1][i_2])=B +size( (i_1-L_r) + (U_r-L_r+1)(i_2-L_c))$
$L_c:$ Lower index of column
$U_r:$ Lower index of row
$L_r:$ Lower index of row
here, $L_c=L_r:=0$
$(U_r-L_r+1)=n1$
$(U_r-L_r+1)=n2$
Here we aren't going to calculate the address. We only want the number of elements so put size=1 and B=0
$e_2=A[i_2][i_3]=( i_2 + n1*i_3)$
For 3-D,
For visualization : https://gateoverflow.in/195348/multidimensional-aaray?show=195362#a195362
[The link shows row major]
A[h][i][j]=( (h- $L_h$)*#rows*#columns + (i) + j*n1)
$e3=A[i_1][i_2][i_3]=(i_1*n1*n2+ i_2 + i_3*n1)=e_2+i_1*n1*n2$