The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
0 votes
55 views
Is this monoid:

Addition modulo (take mode using m) on the set of Integers (Z m)={0,1,2,3,4,…..m-1}

i.e. For all a         a (+ modulo using m) e = e (+ modulo using m) a =a

   here, e is an identity element
asked in Set Theory & Algebra by Active (1.2k points) | 55 views
0
It is a Monoid, bcoz there exist identity $e= 0$

Infact it is a group... Moreover an Abelian group.
0

@Kunal Kadian

what is inverse element if it is group?

0

@srestha

For any element a, inverse b = (m-a) mod m

0
Can The Identity element be m
0

@Nandkishor3939  I think idenitity element should belong to the given set, m is not in given set. Moreover identity element, if exists, is unique. here it is $0$

0
yes, 0 is identity element

and inverse of any element w.r.t. 0

I mean 1 has inverse of 4

right?

that is why group
0

@srestha Yes, If you take m= 5, then inverse of 1 is 4. 

For any general case, inverse of 1 = m-1

0
a (+ modulo using m) m = m (+ modulo using m) a =a

As m donot belong to our set so it is not e right?
0
Yea Right.

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
49,434 questions
53,630 answers
186,007 comments
70,899 users