The Gateway to Computer Science Excellence
–1 vote
66 views
Determine the value of $'P'$ in the equation:
$$P=\sqrt{20+\sqrt{20+\sqrt{20+ \sqrt{20+ \dots + \infty}}}}$$
  1. $4$
  2. $5$
  3. $10$
  4. $20$
in Others by Junior (685 points) | 66 views

1 Answer

+2 votes
$P=\sqrt{20+\sqrt{20+\sqrt{20+ \sqrt{20+ \dots + \infty}}}}$
Sqaring on both sides
$P^2=20+\sqrt{20+\sqrt{20+ \sqrt{20+ \dots + \infty}}}$
$P^2=20+P$
$P^2-P-20=0$
$P^2 +4P-5P-20=0$
$P(P+4) - 5(P+4)=0$
$(P-5)(P+4)=0$
$P=5$
$P=-4$
Ignore the negative value so $P=5$
$\text{Trick}$
$P=\sqrt{20+\sqrt{20+\sqrt{20+ \sqrt{20+ \dots + \infty}}}}$
Make factors here $20 = 4 \times 5$
If sign $'+'$ take answer as highest factor (i.e) 5.
by Junior (685 points)
Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,647 questions
56,461 answers
195,358 comments
100,244 users