In SLR(1) table we place the reduce moves in FOLLOW(LHS of the production).

So if we have , $A \rightarrow \alpha. $ and $B \rightarrow \beta. $ in same state then if $FOLLOW(A) \cap FOLLOW(B) = \phi$ then there will be no R-R conflict in SLR(1) since these reduce moves will be placed n different cells.

similarly,

if we have , $A \rightarrow \alpha . C $ and $B \rightarrow \beta. $ in same state then if $FOLLOW(B) \neq \ cell \ at \ which \ shift \ move \ will \ be \ placed $ then there will be no conflict in SLR(1)