$i = 2.0, j=1.0$
while $( \frac{i}{j} > 0.0625)$
$j = 1$
$ \frac{i}{j} = \frac{2}{1} > 0.0625$
$j=j+j, 1^{st}$ PRINT
$j=2$
$ \frac{i}{j} = \frac{2}{2} > 0.0625$
$j=j+j, 2^{nd}$ PRINT
$j=4$
$ \frac{i}{j} = \frac{2}{4} > 0.0625$
$j=j+j, 3^{rd}$ PRINT
$j=8$
$ \frac{i}{j} = \frac{2}{8} > 0.0625$
$j=j+j, 4^{th}$ PRINT
$j=16$
$ \frac{i}{j} = \frac{2}{16} > 0.0625$
$j=j+j, 5^{th}$ PRINT
$j=32$
$ \frac{i}{j} = \frac{2}{32} = 0.0625$
$Break$
Total $5$ times sum will be printed.