Show that each of these conditional statements is a tautology by using truth tables.
- $(p \wedge q) \rightarrow p $
- $ p \rightarrow (p \vee q)$
- $\sim p \rightarrow (p \rightarrow q)$
- $(p\wedge q)\rightarrow (p \rightarrow q)$
- $\sim (p \rightarrow q) \rightarrow p$
- $\sim(p \rightarrow p) \rightarrow \sim q$