The Gateway to Computer Science Excellence
First time here? Checkout the FAQ!
x
0 votes
32 views
Determine whether $(\sim q \wedge (p \rightarrow q)) \rightarrow \sim p$ is a tautology.
asked in Mathematical Logic by Boss (10.7k points)
edited by | 32 views

2 Answers

0 votes
$(\sim q \wedge (p \rightarrow q)) \rightarrow \sim p$

We know that $p \rightarrow q \equiv \sim p\vee q$

$(\sim q \wedge (\sim p\vee q)) \rightarrow \sim p$

Convert $\wedge\equiv\cdot ,\vee\equiv +$

Now,   $\overline{q}.(\overline{p}+q)\rightarrow \overline{p}$

        $(\overline{q}.\overline{p}+\overline{q}.q)\rightarrow \overline{p}$

        $(\overline{p}\cdot\overline{q}+0)\rightarrow \overline{p}$

       $\overline{p}\cdot\overline{q}\rightarrow \overline{p}$

       $\overline{\overline{p}\cdot\overline{q}}+\overline{p}$

      $p+q+\overline{p}=p+\overline{p}+q=1+q=1$

Now we can write    $p \vee \sim p\equiv \sim q\vee p\equiv T$

  So, this is Tautology.
answered by Boss (39.6k points)
edited by
0
question is whether $(\sim q \;\wedge (p \rightarrow q)) \rightarrow \sim p  $ is a tautology or not. I think, you did small mistake.
0
where are the mistakes?
0
In question , It is $\sim q$ initially, you have taken $\sim p$
+1
Ohh i will correct it thank you so much
0 votes

It is tautology.

answered by Boss (33.9k points)
0
In step 3: q`p` ->p`

In step 4:(q`p`)`+p` instead of  implication symbol

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
49,541 questions
54,084 answers
187,213 comments
70,992 users