$(uv)^R = v^Ru^R,$ for all strings $u,v.$
If $u = \epsilon,$ then $u^R = \epsilon$ and hence $(uv)^R = v^R = v^Ru^R.$
If $v = \epsilon,$ then $v^R = \epsilon$ and hence $(uv)^R = u^R = v^Ru^R.$
Now, suppose $u = u_1u_2 \dots u_m$ and $v = v_1v_2 \dots v_n$, with $m,n \geq 1.$
Then, $(uv)^R = (u_1u_2 \dots u_mv_1v_2 \dots v_n)^R = v_n \dots v_2v_1x_m \dots x_2x_1 = v^Ru^R.$
Detailed Video Solution