The Gateway to Computer Science Excellence
0 votes
16 views
The square of a directed graph $G=(V,E)$ is the graph $G^2=(V,E^2)$ such that $(u,v) \in E^2$ if and only $G$ contains a path with at most two edges between $u$ and $v$ .Describe efficient algorithms for computing $G^2$ and $G$ for both the adjacency list and adjacency-matrix representations of G. Analyze the running times of your algorithms.
in Algorithms by Boss (41.9k points) | 16 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,644 questions
56,503 answers
195,553 comments
101,036 users