# Kenneth Rosen Edition 7th Exercise 2.3 Question 58 (Page No. 154)

1 vote
30 views

How many bytes are required to encode $n$  bits of data where $n$ equals

1. $4$
2. $10$
3. $500$
4. $3000$

## Related questions

1
28 views
Let $a$ and $b$ be real numbers with $a<b$. Use the floor and / or ceiling functions to express the number of integers $n$ that satisfy the inequality $a<n<b.$
Let $a$ and $b$ be real numbers with $a<b$. Use the floor and / or ceiling functions to express the number of integers $n$ that satisfy the inequality $a≤n≤b$.
The function INT is found on some calculators, where INT$(x)$ = $\left \lfloor x \right \rfloor$ when $x$ nonnegative real number and INT$(x)$ = $\left \lceil x \right \rceil$ when x is a negative real number. Show that this INT function satisfies the identity INT$(-x)$=$-$ INT$(x)$
Prove that if $x$ is a reall number , then $\left \lfloor -x \right \rfloor = - \left \lceil x \right \rceil$ and$\left \lceil -x \right \rceil = -\left \lfloor x \right \rfloor$