The Gateway to Computer Science Excellence
0 votes
19 views

Let $S$ be a subset of a universal set $U$. The characteristic function $f_{s}$ of $S$ is the function from $U$ to the set $\left \{ 0,1 \right \}$ such that $f_{S}(x)=1$ if $x$ belongs to $S$ and $f_S(x)=0$ if $x$ does not belong to $S$. Let $A$ and $B$ be sets. Show that for all $x$ $\epsilon$ $U,$

  1. $f_{A \cap B}(x) = f_{A}(x). f_{B}(x)$
  2. $f_{A \cup B}(x) = f_{A}(x)+f_{B}(x) – f_{A}(x).f_{B}(x)$
  3. $f_{\sim A}= 1-f_{A} (x)$
  4. $f_{A \oplus B}(x) = f_{A}(x) + f_{B}(x)- 2 f_{A}(x) f_{B}(x) $
in Set Theory & Algebra by Boss (10.9k points) | 19 views

Please log in or register to answer this question.

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,737 questions
57,382 answers
198,529 comments
105,321 users