2,190 views
0 votes
0 votes

Let $S(n) = 1 + 2 + · · · + n$ be the sum of the first $n$ natural numbers and let $C(n) = 1^{3} + 2^{3} + · · · + n^{3}$ be the sum of the first $n$ cubes. Prove the following equalities by induction on $n,$ to arrive at the curious conclusion that $C(n) = S^{2}(n)$ for every $n.$

  1. $S(n)=\frac{1}{2}n(n+1).$
  2. $C(n)=\frac{1}{4}(n^{4}+2n^{3}+n^{2}=\frac{1}{4}n^{2}(n+1)^{2}.$

1 Answer

0 votes
0 votes
a. Base case : n=1
S(n)= $\frac{1}{2}$$\times$(1)$\times$(1+1)=1.

$\therefore$ Our hypothesis is true for n=1.

Let this hypothesis be true for all integers $\leq$ n. ,i.e S(n)=$\frac{n \times (n+1)}{2}$=1+2+...+n

Then S(n+1)=S(n)+n+1 [From definition]

$\Rightarrow$ S(n)=$\frac{n \times (n+1)}{2}$+$\frac{n \times (n+1)}{2}+(n+1)=(n+1)(\frac{n}{2}+1)=\frac{1}{2} \times (n+1)(n+2)=\frac{1}{2}(n+1)(n+1+1)$=S(n+1).

$\because$ Our theorem is true for n+1, our theorem is true for all integers.
b. Base case : n=1

 $\frac{1}{4}$$\times$($n^{4}+2n^3+n^2$)= $\frac{1}{4}$(1+2+1)=1=C(1).

Our hypothesis is true for n=1.

Let this hypothesis be true for all integers $\leq$ n. ,i.e C(n)=$\frac{n^{4}+2n^3+n^2}{4}$=$1^3+2^3+...+n^3$

C(n+1)=C(n)+$(n+1)^3$=$\frac{n^{4}+2n^3+n^2}{4}$+$(n+1)^3$=$\frac{(n+1)^{4}+2(n+1)^3+(n+1)^2}{4}$

$\because$ our Hypothesis is true for n+1 , our theorem is true for all integers $\geq$0.

Related questions

0 votes
0 votes
1 answer
1
admin asked Apr 14, 2019
562 views
Show that every graph with two or more nodes contains two nodes that have equal degrees.