Consider the function $h$ defined on $\{0,1,…….10\}$ with $h(0)=0, \: h(10)=10 $ and
$$2[h(i)-h(i-1)] = h(i+1) – h(i) \: \text{ for } i = 1,2, \dots ,9.$$
Then the value of $h(1)$ is
- $\frac{1}{2^9-1}\\$
- $\frac{10}{2^9+1}\\$
- $\frac{10}{2^{10}-1}\\$
- $\frac{1}{2^{10}+1}$