1,845 views
6 votes
6 votes

Let $C_i(i=0,1,2...n)$ be the coefficient of $x^i$ in $(1+x)^n$.Then 

$\frac{C_0}{2} – \frac{C_1}{3}+\frac{C_2}{4}-\dots +(-1)^n \frac{C_n}{n+2}$ is equal to

  1. $\frac{1}{n+1}\\$
  2. $\frac{1}{n+2}\\$
  3. $\frac{1}{n(n+1)}\\$
  4. $\frac{1}{(n+1)(n+2)}$

1 Answer

Best answer
12 votes
12 votes
$\left ( 1+x \right )^{n}=^{n}\textrm{C}_{0}+^{n}\textrm{C}_{1}.x+^{n}\textrm{C}_{2}.x^{2}+^{n}\textrm{C}_{3}.x^{3}+.....+^{n}\textrm{C}_{n}.x^{n}$

Multiplying both sides by $x$

$x\left ( 1+x \right )^{n}=^{n}\textrm{C}_{0}.x+^{n}\textrm{C}_{1}.x^{2}+^{n}\textrm{C}_{2}.x^{3}+^{n}\textrm{C}_{3}.x^{4}+.....+^{n}\textrm{C}_{n}.x^{n+1}$

Integrating both sides w.r.t. $x$ we get

$\frac{x.(1+x)^{(n+1)}}{n+1}-\frac{(1+x)^{(n+2)}}{(n+1).(n+2)}+k=\frac{^{n}\textrm{C}_{0}.x^{2}}{2}+\frac{^{n}\textrm{C}_{1}.x^{3}}{3}+\frac{^{n}\textrm{C}_{2}.x^{4}}{4}+.....+\frac{^{n}\textrm{C}_{n}.x^{n+2}}{n+2}$ , where $k$ is arbitrary constant.

Now putting $x=0$ on both sides, $k=\frac{1}{(n+1)(n+2)}$

Again putting $x=-1$ we get,

$\frac{1}{(n+1)(n+2)}=\frac{C_{0}}{2}-\frac{C_{1}}{3}+\frac{C_{2}}{4}-......+(-1)^{n+2}\frac{C_{n}}{n+2}$

$\frac{1}{(n+1)(n+2)}=\frac{C_{0}}{2}-\frac{C_{1}}{3}+\frac{C_{2}}{4}-......+(-1)^{n}\frac{C_{n}}{n+2}$

So, Answer will be $D)$
selected by
Answer:

Related questions

1 votes
1 votes
1 answer
1
3 votes
3 votes
3 answers
2
1 votes
1 votes
4 answers
3