The Gateway to Computer Science Excellence

0 votes

Given the following four functions $f_{1}(n)=n^{100},$ $f_{2}(n)=(1.2)^{n},$ $f_{3}(n)=2^{n/2},$ $f_{4}(n)=3^{n/3}$ which function will have the largest value for sufficiently large values of n $(i.e.$ $n\rightarrow\infty)?$

- $f_{4}$
- $f_{3}$
- $f_{2}$
- $f_{1}$

+5 votes

Best answer

- $f_{1}(n) = n^{100}$
- $f_{2}(n) = (1.2)^{n}$
- $f_{3}(n) = (2)^{n/2} = (1.414)^{n}$
- $f_{4}(n) = (3)^{n/3} = (1.442)^{n}$

We know that $(1.442)^{n} > (1.414)^{n}$ and $(1.442)^{n} > (1.2)^{n}$

$\Rightarrow$$f_{4}(n)$ is greater than both $f_{2}(n)$ and $f_{3}(n)$

Now we have to check between $f_{4}(n)$ and $f_{1}(n)$

But $f_1(n)$ is a polynomial function and $f_4(n)$ is a exponential function. Any exponential function will have larger value than any polynomial function for sufficiently large value of input. So, $f_4(n)$ has the largest value here.

Option A. $f_{4}(n)$ is the correct answer.

52,215 questions

60,024 answers

201,249 comments

94,710 users