search
Log In
1 vote
119 views
Let $A(n)$ denotes the number of $n$ bit binary strings which have no pair of consecutive $1’s.$ what will be recurrence relation for it and what will be it’s Time Complexity??
in Algorithms
edited by
119 views
1

similar problem from Rosen

0

@ankitgupta.1729

yes base condition will be

$T(0)=0$

$T(1)=01$

right??

0
You can use dynamic programming to get the answer in $O(n)$ , since the recurrence is same as that of the Fibonacci one.
1

@srestha mam, $a_1=2$ because 0 and 1 are possible strings of size 1 where no consecutive 1 occurs 

0
but then it just a count of elements

Here we want how recurrence grows

right??
0
recurrence is defined  for 'no. of n bit strings where no two consecutive 1s occur'

Please check the given pic and understand the meaning of $a_n, a_{n-1},a_{n-2}$

Please log in or register to answer this question.

Related questions

4 votes
3 answers
1
0 votes
1 answer
2
161 views
what is the recurrence relation for binary search and linear search? please explain how to derive them.
asked Jan 11, 2018 in Algorithms iarnav 161 views
...