The Gateway to Computer Science Excellence
+1 vote

Consider a sequence of numbers $a_1, a_2, a_3, \dots , a_n$ where $a_n = \frac{1}{n}-\frac{1}{n+2}$, for each integer $n>0$. Whart is the sum of the first 50 terms?

  1. $\left( 1+ \frac{1}{2} \right) - \frac{1}{50}$
  2. $\left( 1+ \frac{1}{2} \right) + \frac{1}{50}$
  3. $\left( 1+ \frac{1}{2} \right) - \left( \frac{1}{51} + \frac{1}{52} \right)$
  4. $1 - \left( \frac{1}{51} + \frac{1}{52} \right)$
in Numerical Ability by Boss (17.5k points)
recategorized by | 100 views
Migrated from GO Civil 7 months ago by Arjun
Answer is C

1 Answer

+2 votes
Best answer

Sequence of numbers $a_{1},a_{2},a_{3},\ldots,a_{n}$

where $a_{n}=\frac{1}{n}-\frac{1}{n+2}$  for each  integer $n>0$

Now we find the $1^{st}$ term, $2^{nd}$ term up to $50^{th}$ term






Sum of the first $50$ terms



We can write like this
$S=\left (1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…..+\frac{1}{50} \right )-\left ( \frac{1}{3}+\frac{1}{4}+\frac{1}{5} +\frac{1}{6}+\ldots+\frac{1}{52}\right )$
$\quad=\left (1+\frac{1}{2}\right )+ \left \{\left (\frac{1}{3}+\frac{1}{4}+\ldots+\frac{1}{50} \right ) -\left ( \frac{1}{3}+\frac{1}{4}+\frac{1}{5} +\frac{1}{6}+\ldots+\frac{1}{50}\right ) \right \}-\frac{1}{51}-\frac{1}{52}$
$\quad=\left ( 1+\frac{1}{2}\right )-\left (\frac{1}{51}+\frac{1}{52} \right )$

So, correct options is (C).

by Veteran (58.6k points)
selected by

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,741 questions
57,251 answers
104,670 users