Log In
2 votes

Each of the letters arranged as below represents a unique integer from $1$ to $9.$ The letters are positioned in the figure such that $(A \times B \times C), (B \times G \times E)$ and $(D \times E \times F)$ are equal. Which integer among the following choices cannot be represented by the letters $A, B, C, D, E, F  \ or \ G?$

A   D
C   F
  1. $4$
  2. $5$
  3. $6$
  4. $9$
in Numerical Ability
edited by
Migrated from GO Civil 1 year ago by Arjun

3 Answers

2 votes
Best answer
As per the given conditions,

$A\times B\times C=B\times G\times E$

$A\times C = G\times E$

If $A=5,$ either $G$ or $E$ has to be $5$ as $5$ is a prime number.

But $5$ can be considered only once as all the numbers are unique.

$\therefore$ It can be concluded that none of the numbers $A,B,C,D,E,F \ \ or \ \ G$  is $5.$

Correct answer is $(B).$

selected by
0 votes

It's $5$ Because there is no other number between $1$ to $9$ other than $5$ has $5$ as its factor.  Since $ABC = BGE = DEF$ if one keeps some value in place of alphabet, other triplets must have that value as one of its factor to make triplets equal.  This can't be achieved with $5$ & $7$.


More Explanation

Let's say $A*B*C=144= 2^{4}*3^2$, Now some ways to make product $144$ are $2^{3}*(2*3)*4= 8*6*3$ and $2^{2}*2*3^{2}=4*2*9$. So, you could be able to make product equal with different integers just because you selected integers which could be derived from factorization of other integers to make product equal. But this could not be achieved with prime numbers. 

edited by
in the question it is mentioned that all letters represent a unique integer.. then how can all triplets have the same integers?

Rather that makes for answer... I'm not talking about repeating integers but using integers having factors. @aditi19

could u explain with example? it's not clear to me

Okay, @aditi19 , will update the answer.  


@aditi19 Updated. Check. Let me know which part you don't get if obscurity still persists. 

ok i got it
0 votes
Here it is given that,


this means that,

AC=GE  and BG=DF

Now 4*2=1*8

Here,i can assign A=4,C=2,G=1,E=8


Here,i can assign A=6,C=3,G=2,E=9

In above 2 cases,i can find a assignment of a letter to 4,6,9. Only number left is 5. Hence it is the answer.

Also if A or C is 5, then the product GE must be one of 5,10,15,20,25,30,35 40,45 which requires one of G or E to be 5. This violates,unique assignment property given in question.

edited by

Related questions

4 votes
2 answers
Hema's age is $5$ years more than twice Hari's age. Suresh's age is $13$ years less than 10 times Hari's age. If Suresh is $3$ times as old as Hema, how old is Hema? $14$ $17$ $18$ $19$
asked Feb 17, 2018 in Numerical Ability gatecse 427 views
1 vote
1 answer
The temperature $T$ in a room varies as a function of the outside temperature $T_0$ and the number of persons in the room $p$, according to the relation $T=K(\theta p +T_0)$, where $\theta$ and $K$ are constants. What would be the value of $\theta$ ... $} \\\hline \text{$30$} & \text{$5$} & \text{$42.0$} \\\hline \end{array}$ 0.8 1.0 2.0 10.0
asked Feb 17, 2018 in Numerical Ability gatecse 323 views
1 vote
4 answers
Tower $A$ is $90 \ m$ tall and tower $B$ is $140 \ m$ tall. They are $100 \ m$ apart. A horizontal skywalk connects the floors at $70 \ m$ in both the towers. If a taut rope connects the top of tower $A$ to the bottom tower $B,$ at what distance (in meters) from tower $A$ will the rope intersect the skywalk$?$
asked Feb 17, 2018 in Numerical Ability gatecse 837 views
1 vote
1 answer
Consider a sequence of numbers $a_1, a_2, a_3, \dots , a_n$ where $a_n = \frac{1}{n}-\frac{1}{n+2}$, for each integer $n>0$. Whart is the sum of the first 50 terms? $\left( 1+ \frac{1}{2} \right) - \frac{1}{50}$ $\left( 1+ \frac{1}{2} \right) + \frac{1}{50}$ $\left( 1+ \frac{1}{2} \right) - \left( \frac{1}{51} + \frac{1}{52} \right)$ $1 - \left( \frac{1}{51} + \frac{1}{52} \right)$
asked Feb 17, 2018 in Numerical Ability gatecse 185 views