It is given that :- $X*Y*Z= 192$ , $Z=4$. So, $X*Y=48$
Now, $P=\frac{X+Y}{2}=\frac{X+\frac{48}{X}}{2}=\frac{1}{2}\left ( X+\frac{48}{X} \right )$
Now, to find the minimum value of $P,$ Differentiate $P$ with respect to $X$
$\frac{\mathrm{d} P}{\mathrm{d} X} = \frac{1}{2}\left ( 1 -\frac{48}{X^{2}} \right )$
Now, $\frac{\mathrm{d} P}{\mathrm{d} X} = 0$
So, $X= \pm 4\sqrt{3}$
Now, at $X= +4\sqrt{3}$, $\frac{\mathrm{d}^{2}P }{\mathrm{d} X^{2}} > 0$
So, $P$ will be minimum at $X= +4\sqrt{3}$
So, Minimum value of $P$ will be $\frac{1}{2}\left ( 4\sqrt{3} + \frac{48}{4\sqrt{3}} \right ) = 2\sqrt{3} + \frac{6}{\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3} =6.928….$(An Irrational value)
No options are matching.
For this question, Marks were given to all.