The Gateway to Computer Science Excellence

+1 vote

The sum and product of two integers are $26$ and $165$ respectively. The difference between these two integers is ______

- $2$
- $3$
- $4$
- $6$

Migrated from GO Mechanical 1 year ago by Arjun

+4 votes

Best answer

Let the two integers be $x$ and $y.$

Given that:

- $x+y=26\qquad \to (1)$
- $xy=165\qquad \to(2)$

To be find$:x-y=?$

We know that $(x-y)^{2}=x^{2}+y^{2}-2xy$

$\implies(x-y)^{2}=x^{2}+y^{2}+2xy-4xy$

$\implies(x-y)^{2}=(x+y)^{2}-4xy$

Put the values from equation $(1)$ and $(2)$ and we get

$\implies(x-y)^{2}=(26)^{2}-4\times165$

$\implies(x-y)^{2}=676-660$

$\implies(x-y)^{2}=16$

$\implies(x-y)=\sqrt{16}$

$\implies x-y=\pm4$

$\implies x-y=4$ $(or)$ $x-y=-4$

$-4$ is ruled out as both the sum and product of the numbers are positive meaning both the numbers must be positive.

So, $(C)$ is the correct choice.

52,375 questions

60,613 answers

202,049 comments

95,431 users