The Gateway to Computer Science Excellence
+1 vote
313 views

The value of the expression $\dfrac{1}{1+ \log_u \: vw} + \dfrac{1}{1+ \log_v \: wu} + \dfrac{1}{1+\log_w uv}$ is _______

  1. $-1$
  2. $0$
  3. $1$
  4. $3$
in Numerical Ability by Veteran (423k points)
edited by | 313 views
Migrated from GO Mechanical 5 months ago by Arjun

1 Answer

+3 votes
Best answer
$\dfrac{1}{1+ \log_{u} \: vw} + \dfrac{1}{1+ \log_{v} \: wu} + \dfrac{1}{1+\log_{w} uv}$

$ = \dfrac{1}{\log_{u} \: u + \log_{u} \: vw} + \dfrac{1}{\log_{v} \: v  + \log_{v} \: wu} + \dfrac{1}{\log_{w} \: w +\log_{w} \: uv}$

$ = \dfrac{1}{\log_{u} \: uvw} + \dfrac{1}{\log_{v} \: vwu} + \dfrac{1}{\log_{w} \: wuv}$

$ = \dfrac{1}{\log_{u} \: uvw} + \dfrac{1}{\log_{v} \: uvw} + \dfrac{1}{\log_{w}\: uvw}$

$ = \log_{uvw} \: u + \log_{uvw} \: v + \log_{uvw} \: w$

$ = \log_{uvw} \: uvw $

$ = 1\qquad\because\left(\log_{a} \: a = 1 \right)$

Hence $(C)$ is Correct.
by Active (4.9k points)
edited by
+1
assume  u=v=w=10

we will get ans as 1

Related questions

Quick search syntax
tags tag:apple
author user:martin
title title:apple
content content:apple
exclude -tag:apple
force match +apple
views views:100
score score:10
answers answers:2
is accepted isaccepted:true
is closed isclosed:true
50,650 questions
56,236 answers
194,264 comments
95,871 users