105 views
Consider the $5\times 5$ matrix:

$\begin{bmatrix} 1 & 2 &3 & 4 &5 \\ 5 &1 &2 & 3 &4 \\ 4& 5 &1 &2 &3 \\ 3& 4 & 5 & 1 &2 \\ 2&3 & 4 & 5 & 1 \end{bmatrix}$

It is given $A$ has only one real eigen value. Then the real eigen value of $A$ is ________
closed as a duplicate of: Gate ECE 2017 Eigen Value

closed | 105 views
+1
0

+1 vote
$\left | A - \lambda I \right | =0$

$\Rightarrow \begin{vmatrix} 1 - \lambda & 2 & 3 & 4 & 5 \\ 5 & 1 - \lambda & 2 & 3 & 4 \\ 4 & 5 & 1 - \lambda & 2 & 3\\ 3 & 4 &5 & 1 - \lambda &2 \\ 2 & 3 & 4 & 5 & 1 - \lambda \end{vmatrix} = 0$

Perform the row operation: $R_1 \rightarrow R_1 + R_2 + R_3 + R_4 + R_5$

$\Rightarrow \begin{vmatrix} 15 - \lambda & 15 - \lambda & 15 - \lambda & 15 - \lambda & 15 - \lambda \\ 5 & 1 - \lambda & 2 & 3 & 4 \\ 4 & 5 & 1 - \lambda & 2 & 3\\ 3 & 4 &5 & 1 - \lambda &2 \\ 2 & 3 & 4 & 5 & 1 - \lambda \end{vmatrix} = 0$

So, $\lambda = 15$ is the eigen value.
by (233 points)
selected by
$\begin{bmatrix} 1 & 2 &3 & 4 &5 \\ 5 &1 &2 & 3 &4 \\ 4& 5 &1 &2 &3 \\ 3& 4 & 5 & 1 &2 \\ 2&3 & 4 & 5 & 1 \end{bmatrix}$

The characteristic equation is

$\begin{vmatrix} A-\lambda I \end{vmatrix}=0$

$\Rightarrow$$\begin{vmatrix} 1-\lambda & 2 &3 & 4 &5 \\ 5 &1-\lambda &2 & 3 &4 \\ 4& 5 &1-\lambda &2 &3 \\ 3& 4 & 5 & 1-\lambda &2 \\ 2&3 & 4 & 5 & 1-\lambda \end{vmatrix} =0 Applying C_{1}\leftarrow C_{1}+C_{2}+C_{3}+C_{4}+C_{5} \Rightarrow$$\begin{vmatrix} 15-\lambda & 2 &3 & 4 &5 \\ 15-\lambda &1-\lambda &2 & 3 &4 \\ 15-\lambda & 5 &1-\lambda &2 &3 \\ 15-\lambda& 4 & 5 & 1-\lambda &2 \\ 15-\lambda&3 & 4 & 5 & 1-\lambda \end{vmatrix}$ =0

Taking $15-\lambda$ as common

$\Rightarrow$$(15-\lambda)$$\begin{vmatrix} 1 & 2 &3 & 4 &5 \\ 1 &1-\lambda &2 & 3 &4 \\ 1& 5 &1-\lambda &2 &3 \\ 1& 4 & 5 & 1-\lambda &2 \\ 1&3 & 4 & 5 & 1-\lambda \end{vmatrix}$=0

$\Rightarrow$$(15-\lambda)=0 \Rightarrow$$\lambda=15$
by Boss (17.2k points)

1
+1 vote
2